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The results of the implementation and optimization of the real Level 2 BLAS
routines on the Cyber 205 vectorcomputer are presented. The Level 2 BLAS
routines perform three types of matrix-vector operations, viz., matrix-vector
multiplication, rank-1 and rank-2 updates, and solution of triangular systems of
equations. The performance of the routines varies between 60% and 80% of
the maximum Cyber 205 performance, for general matrices of order 500, and
for band matrices of order 30000 with 6 non-zero diagonals.

INTRODUCTION

A good compromise between portability and efficiency of numerical software
can be found in the LINPACK-Library ([1]), a library of numerical linear alge-
bra routines, which is available on many large scientific computers. In order to
optimize this library on a given machine, only a small core of routines which
perform basic operations on vectors, the so-called BLAS, has to be adapted to
the specific speed requirements of this machine. The remainder of this library,
written in portable ANSI Fortran 77, can be installed unchanged on the given
machine.

However, with the advent of supercomputers like the Cray 1 and the Cyber
205 one realized ([2]) that in order to get maximal performance on these
machines it is necessary to optimize on the matrix-vector level, rather than on
the vector-vector level. To that end, Dongarra et al. have proposed a set of
Extended BLAS or Level 2 BLAS routines ([2, 3]). This set performs three types
of matrix-vector operations, viz., matrix-vector multiplication, rank-1 and -2
updates and solution of triangular systems of equations. Four Fortran data
types of the matrices involved are defined, viz., REAL, DOUBLE PRECI-
SION, COMPLEX, and COMPLEX*16 or DOUBLE COMPLEX (if avail-
able).

We have optimized on a CDC Cyber 205 the real versions of the Extended
BLAS. With these routines we have obtained nearly (between 60% and 80% of
the) maximum performance of this machine with full matrices of order = 500.
The Cyber 205 optimized routines are available in the NUMVEC-Library and
the NUMVEC-Letter presents more information about this library ([5]).

In Section 2 of this paper we give a concise description of the Extended
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BLAS. Section 3 provides details of how we have optimized the real Level 2
BLAS on a Cyber 205 vectorcomputer. In Section 4 we present a selection of
results obtained with a Master Test Program of DONGARRA ([4]) together with
results of efficiency tests, for the 16 real Level 2 BLAS routines.

2. THE EXTENDED BLAS
The set of Extended BLAS is subdivided into three subsets which perform the
following types of operations:

a)  Matrix-vector products of the form

yeadx+By, yead Tx-f-,By, ye—aZTx—F,By,

where « and B are scalars, x and y are vectors, 4 is a matrix,
and of the form

=7
xeTx, xTTx, xeT'x

where x is a vector and T is an upper or lower triangular matrix.

b)  Rank-one and rank-two updates of the form
AcaxyT+A4, Adeaxi’ +4,
H(—ax)_cT+H, H(—ax)_zr-i—?iyfr—i— H,

where H is a Hermitian matrix.

)  Solution of triangular equations of the form

_ _ ——T
xeT 7 'x, x<T Tx, xeT 'x

]

where T is a non-singular upper or lower triangular matrix.

The matrices can be general, general band, Hermitian, Hermitian band, tri-
angular and triangular band (where appropriate); the operations can be done
in real and complex arithmetic, in single and double precision (In appendix B
to [2] some additional routines are proposed which allow exrended precision
matrix-vector operations to be performed).

For the names of the various routines the following convention is adopted:
the first character indicates the Fortran data type of the matrix:

S REAL
D DOUBLE PRECISION
C COMPLEX

Z COMPLEX*16 OR DOUBLE COMPLEX
characters two and three denote the kind of matrix:

GE  General matrix
GB  General band matrix
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SY  Symmetric matrix
SP Symmetric matrix stored in packed form
SB  Symmetric band matrix

HE  Hermitian matrix
HP  Hermitian matrix stored in packed form
HB  Hermitian band matrix

TR Triangular matrix
TP Triangular matrix in packed form
TB  Triangular band matrix

characters four and five denote the type of operation:

MV Matrix-vector product

R Rank-one update

R2  Rank-two update

Sv Solve a system of equations

The available combinations are indicated in the following table. In the first
column (headed complex) the initial C may be replaced by Z. In the second
column (headed real) the initial S may be replaced by D. We have imple-
mented on the Cyber 205 the real Level 2 BLAS routines. The complex rou-
tines will be finished shortly. We have not implemented the D-routines since
on the Cyber 205 the single-precision wordlength (47 bits mantissa) is
sufficient for most applications.

complex real MV R R2 SV

CGE SGE * *

CGB SGB *

CHE SSY * * *

CHP SSP * * *

CHB SSB *

CTR STR * *
CTP STP * *
CTB STB * *

For details of the Extended BLAS (Parameter Conventions, Storage Conven-
tions, Subroutine Specifications, Calling Sequences, Applicability of the
Extended BLAS in the LINPACK and EISPACK-libraries) the reader is
referred to [2]. Here, we present only the calling sequences for all the real
Level 2 Blas routines (Table 2.1).
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name options dim b-width scalar  matrix  x-vector scalar y-vector
SGEMV TRANS. MN, ALPHA. A LDA.  X.INCX.  BETA. Y.INCY)
SGBMV ¢ TRANS, MN. KL KU, ALPHA, A LDA. X INCX.  BETA. Y.INCY)
SSYMV  (UPLO. N, ALPHA, A LDA, X, INCX.  BETA. Y.INCY)
SSBMV  (UPLO. N K. ALPHA, A LDA.  X.INCX.  BETA. Y.INCY)
SSPMV  (UPLO, N, ALPHA. AP, X.INCX.  BETA.  Y.INCY)
STRMV  (UPLO, TRANS. DIAG. N, A/LDA. X INCX)
STBMV  (UPLO. TRANS. DIAG. N K. A LDA. X INCX)
STPMV  (UPLO. TRANS. DIAG. N AP, X, INCX)
STRSV  (UPLO. TRANS, DIAG, N, A LDA,  X.INCX)
STBSV  (UPLO, TRANS. DIAG, N, K. A.LDA. X, INCX)
STPSV  (UPLO. TRANS. DIAG, N AP, X, INCX)

name options dim scalar x-vector y-vector matrix

SGER ( M, ALPHA, X, INCX. Y. INCY, A, LDA)
SSYR (UPLO, ALPHA, X/ INCX, A, LDA)
SSPR (UPLO, ALPHA, X, INCX, AP)

SSYR2  (UPLO,
SSPR2  (UPLO.

ALPHA, X, INCX, Y. INCY, A. LDA)
ALPHA, X INCX, Y. INCY, AP)

zzzzz

TaBLE 2.1. The calling sequences for the real Level 2 BLAS.

The arguments that specify the options have the following meaning:

name value meaning
UPLO ‘U” Upper tr.iangle
‘L Lower triangle
N Operate with the matrix
TRANS P
‘T" or ‘C’ Operate with the transpose of the matrix
piag Y The matr:lx @s unit trigngglar
‘N’ The matrix is non-unit triangular

The size of the matrix is determined by the arguments M and N for an m by n
rectangular matrix, and by the argument N for an n by » symmetric or tri-
angular matrix. The bandwidth of a matrix is determined by the arguments
KL and KU for a rectangular matrix with k/ sub-diagonals and ku super-
diagonals, and by the argument K for a symmetric or triangular matrix with &
sub-diagonals and/or super-diagonals. The matrix can be described by the
array name (A) followed by the leading dimension (LDA) of the array as
declared in the calling (sub) program, when the matrix is stored in a two-
dimensional array. When the matrix is being stored as a (packed) vector, it is
described by the array name (AP) alone. The scalars a and B are described by
the arguments ALPHA and BETA, respectively. The vectors x and y are
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described by the arguments X and Y, respectively, each followed by the
storage spacing in the array of the vector elements, INCX and INCY respec-
tively. For example, a call to SGEMV looks as follows:

CALL SGEMV(TRANS, M, N, ALPHA, A, LDA,
+ X, INCX, BETA, Y, INCY)

This activates one of the following two real matrix-vector operations:
ye—adx+By (TRANS=‘N’), or
yeadTx+py (TRANS='T’or ‘C’).

A is a general M XN matrix, ALPHA and BETA are scalars, X and Y are vec-
tors. LDA is the leading dimension of A (declared in the calling (sub) pro-
gram), INCX and INCY specify the increments for the elements of x and y,
respectively.

3. IMPLEMENTATION OF THE REAL LEVEL 2 BLAS oN THE CYBER 205

3.1. Matrix-vector multiplication on the Cyber 205

On the Cyber 205, operations on arrays should be carried out as much as pos-
sible on elements which are stored in contiguous memory locations. Since in
Fortran elements of two-dimensional arrays are stored columnwise, the ordi-
nary matrix-vector multiplication should be organized in terms of operations
on columns (which could be rows of the matrix in the transposed case). We
shall discuss here the matrix-vector multiplication y:=A4x, 4 =(q;), x =(x;),
Y=, i=1 - m; j=1,-- 000, where A is a general matrix, a symmetric
matrix, or a band matrix (the triangular case runs similar to the symmetric
case).

3.1.1. A is a general matrix. The usual mathematical formulation for y:=Ax
is:

Yii= Dayx=(a,x), =1 .m,
j=1

i.e., y; is the inner product of the i-th row of 4 (denoted by ;) and the vector
x. On the Cyber 205 we compute

n
= 2x4;
j=1

i.e., a linear combination of the columns of A with coefficients x,x,, - - -, X,.
This can be done with the well-known linked-triad (or SAXPY) construction
(vector 1:= vector 1 + scalar*vector 2), hence each column addition requires
m clock cycles (apart from start-up time).
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3.1.2. 4 is a symmetric matrix. We have a;=a;; and m =n, and we suppose
that UPLO="U", so that the matrix 4 is available in the upper part (including
the main diagonal) of the array A. Multiplication of the upper part of A4 by x
and storage into y is carried out as follows:

yi=xa,txas+t o tx,a,,

where a; is the n-vector (a;,as, - -+ ,4;:,0, - - -, 07, i =1,2, - - - .n. Multipli-
cation of the lower part of A by x and addition to y proceeds as follows:

i-l

yii= gyt Dax, =200

j=1
In both cases, columns of A are referenced, i.e., elements of 4 which are stored
in contiguous memory locations. On the Cyber 205, the upper part computa-
tion is carried out with the aid of the linked-triad construction, and the lower
part computation with the dot-product construction (cf. Section 4 for max-
imum obtainable performances). We emphasize that here, due to the separate
treatment of the upper and the lower part of the matrix 4, the total number of
vector operations is 2n —1, compared with n in the general case. Conse-
quently, the performance in the symmetric case will be worse than in the gen-
eral case (because of n —1 more vector start-up times needed). When the sym-
metric matrix 4 is stored in packed form, the elements of 4 are stored in a
linear, rather than a 2-dimensional, array in the following order:

a, ay, d, a3, dz, dszz, ", Ay, dyg, ", Ay,

col.1 col.2 col.3 col.n

Hence, the algorithm for the packed symmetric case runs similar to the non-
packed symmetric case.

3.1.3. A is a band matrix. In the convention of the Level 2 BLAS, band
matrices are supposed to be stored in rectangular arrays such that diagonals of
the matrix are stored in rows, and columns of the matrix in corresponding
columns of the array. For the computation of 4x we use a multiplication
scheme based on diagonals of A, rather than on rows or columns. This allows
us to write reasonably efficient vector code for band matrix multiplication,
albeit that on the Cyber 205 the diagonals of the matrix 4 have to be gathered
from the rows of the array, before the necessary vector operations can be car-
ried out. For example, suppose that 4 is a tridiagonal matrix with n rows and
columns, the main diagonal being given by 4;, i =1,...,n, the subdiagonal by b,
i=1,---,n—1 and the superdiagonal by ¢;, i=2,---,n. Then the
diagonal-based multiplication scheme for y : =Ax reads as follows:



Real Level 2 BLAS on the Cyber 205 205

[ V1] 0117 0 7 rar ] [ X1 ] (€21 [Xx2]
Y2 b X as X3 €3 X3
Y3 by X2 as X3 Cq X4
. = . * . + . * . + | % .
Vn—1 bn—Z Xp -2 ay -1 Xn —1 Cn Xn
b, - Xp— a X 0 0

IR N St Nt N e N A A el B

1 T 7
subdiagonal main diagonal superdiagonal.

On the Cyber 205, gathering of a vector from memory with constant stride
requires at least 5/4 clock cycles per element (independent of the number of
pipes). Hence the time needed to compute one element of y is at least 3*5/4
clock cycles for gathering, 3 clock cycles for multiplication and 2 clock cycles
for addition of the elements. If the gathenno were not needed (namely, when
the diagonals of the matrix were stored in columns of the rectangular array)
then on a p-pipe Cyber 205 a speed-up were possible with a factor of

S/p+3%5/4 1.75 for p=1,
AR = b5 gor p=2,
P 4 for p=4.

3.2. Cyber 205 optimization
We have made extensive use of the following Cyber 205 optimization tools.
Details may be found in [6].

3.2.1. Vectorsyntax. We explain this by an example. The computation of

= By tadx= By-l—aE
Jj=1

may be expressed in vector-syntax as follows (suppose f70 and INCX =
INCY = 1):

Y(1;M) = BETA * Y(1;M)
DO 10 J=I1, N
Y(1;M) = Y(1;M) + ALPHA*X(D)*A(1.J;M)
10 CONTINUE

Here, Y(1;:M) is the vector of M elements starting at Y(1) and A(LJ;M) the
vector of M elements starting at A(1,J) (which is the J-th column of A).
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3.2.2. Descriptors. A descriptor is a pointer to a vector (of array-elements_),
consisting of the starting location and the length of that vector; moreover, it
has a certain data type which corresponds to the data type of the vector to
which it points. A descriptor may either point to a vector of already existing
array-elements, explicitly declared in some DIMENSION-statement, or to a
dynamically allocated vector (of array-elements). The link between a descrip-
tor and a vector is realized by a descriptor ASSIGN-statement. Examples of
both cases occur in the following piece of code.

REAL A(1000)
REAL AD, BD
DESCRIPTOR AD, BD

ASSIGN AD, A(1;1000)

* INITIALIZE A(l), . .., A(1000) TO ZERO
AD = 0.0 E-0

ALLOCATE A DYNAMIC VECTOR OF LENGTH 1000
* TO WHICH BD POINTS
ASSIGN BD, .DYN. 1000
*  COPY A(l), ..., A(1000) TO THIS VECTOR
BD = AD

The starting location and the length of a vector connected to a descriptor may
be changed by so-called special calls (inline machine instructions). If the
descriptor BD points to a vector starting at the J-th element of an array, and
if this should be changed to element K, then this is accomplished by the code:

IDIF = (K-J)*64
CALL Q8ADDX (BD, IDIF, BD)

Changing the length to L ( < 65535) can be done as follows:
CALL Q8PACK (L, BD, BD)

Loading the I+ 1-th element of the vector to which BD points into the REAL
R is accomplished by:

CALL Q8LOD (BD, I, R)

and the reverse operation, storing, by
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CALL QS8STO (BD, I, R).

3.2.3. Vector intrinsic functions. On the Cyber 205 there are many vector
intrinsic functions for operating on vectors ([6, pp. 10-20/10-29]). In our
implementation of the Level 2 BLAS we have made use of the following:

Q8SDOT : computes the dot-product of two vectors
Q8VREV : reverts the elements of a vector
Q8VGATHP : periodic gather of the elements of a vector
Q8VSCATP : periodic scatter of the elements of a vector.

4. Test RESULTS WITH THE CYBER 205 LEVEL 2 BLAS

The Master Test Program of Dongarra et al. ([4]) was used as a debugging aid
and a validation tool of our Cyber 205 implementation of the Level 2 BLAS.
We have tested the 16 real Level 2 BLAS routines with the data-set as given
on p. 15 of [4]. This data-set induces a total of 30,409 test-calls of the Level 2
BLAS routines and the lengths of the test-vectors vary between 0 and 9. The
CPU-time on the 1-pipe Cyber 205 of SARA (Academic Computing Centre,
Amsterdam) was 10.6sec. The time to test the corresponding Fortran 77
model implementation of the Level 2 BLAS was 10.3 sec.

We have measured the efficiency of our Cyber 205 Level 2 BLAS routines by
means of numerous test-calls with large vectors and matrices as input data.
Below we present a selection of the results obtained. The MFLOP/s-rates (Mil-
lion FLOating Point operations per second) presented there should be com-
pared with the maximum obtainable MFLOP/s-rates for the various vector
constructs employed in the Cyber 205 implementation:

Construct (v=vector, s=scalar) Maximum MFLOP/s on a Cyber 205

1-pipe 2-pipe 4-pipe
vev +s*v  (linked triad) 100 200 400
se—(v,v) (dot product) 100 100 100

veyv+v*y 50 100 200
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Routine  Number of operations Choice of arguments

SGEMV  2MN + M +N a0, B0
IN(KL+KU+2) M=N, a0, B0

SCBMV -KL(KL+ 1)-KU(KU +1)

SSPMV 2N +2N a0, B

SSBMV  4N(K+ 1)-2K(K +1) a0, B£0

STPMV

STBMV ~ NQ2K+1)-K(K+1) DIAG = ‘N’

SGER 2MN+MIN(M,N) a0

SSYR 2 0

SSPR N°+2N a=

SSYR2 2

SSPR2 2N“+2N a=0

STRSV 2 — o\

STPSV 2N DIAG = ‘N

STBSV ~ NQK+1)-K(K+1) DIAG = ‘N’

TABLE 4.1. Numbers of operations for the various Level 2 BLAS routines.

The last construct is being used in the band matrix routines (except for
STBSV), so that, e.g. on a I-pipe the maximum performance of these routines
is 50 MFLOP/s (if the diagonals were stored columnwise). For the other rou-
tines this maximum is 100 MFLOP/s, and for STBSV only scalar speed can be
obtained.

In order to compute the MFLOP/s-rates of the Cyber 205 implementation
we have calculated, for some choices of the arguments of the various routines,
the number of operations. (Table 4.1).
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\ INCX (=INCY)=1 INCX (=INCY)=-2
' TIMES IN MSEC.|MFLOP/s| TIMES IN MSEC.|MFLOP/s

Routine I 11 of IT") I II of IT)
SGEMV 7.1 6.6  76(124) 131 6.5  T7(124)
SGBMV 133 16.0 26(38) 174 17.4 24(32)
SSYMV 8.1 8.1 62(74) 66 8.1 62(73)
SSPMYV 66 83 60(71) 66 8.3 60(71)
SSBMV 190 11.6 31(48) 120 13.4 27(37)
STRMV 49 4.0 62(90) 66 4.0 62(90)
STPMV 66 42 60(85) 66 4.2 60(85)
STBMV 149 13.7 24(33) 160 14.6 23(29)
SGER 7.0 6.4  78(128) 131 6.4  78(127)
SSYR 4.6 39 64(93) 66 4.0 63(92)
SSPR 66 39 64(93) 66 4.0 63(93)
SSYR2 8.1 7.2 70(107) 81 7.2 70(106)
SSPR2 81 72 70(107) 81 7.2 770(106)
STRSV 66 43 58(82) 79 4.3 58(81)
STPSV 66 4.6 54(75) 79 4.6 54(74)
STBSV 184 109 3(3) 190 110 3(3)
I: Fortran 77 model implementation from [4], compiled with

automatic vectorization option
II.:  Cyber 205 implementation (run on the 1-pipe Cyber 205 of
SARA: The Academic Computing Centre Amsterdam)
") The numbers in parentheses give the corresponding speeds
on a 2-pipe Cyber 205

TABLE 4.2. Selection of results of efficiency tests of Level 2 BLAS routines.

The results presented in Table 4.2 were obtained with the following values

of the arguments of the routines:

UPLO = ‘U’, TRANS = ‘N’ , DIAG = ‘N’;

M =N =500 for full matrices, M=N= 30,000 for band matrices;

KL = 3, KU = 2, for SGBMV;

K =2 for SSBMV, K =35 for STBMV and for STBSV;

a=0.7, B=0.9.

For the model implementation the differences between packed and non-packed
versions are due to the fact that the loop
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K = KK

DO 10, I=1J
AP(K) = AP(K) + X(I) * TEMP
K=K+ 1

10 CONTINUE

is not vectorized automatically by the FTN200-compiler.

The MFLOP/s-rates show that an efficiency of more than 60% of the maxi-
mal performance is achieved. For band matrix routines, the vev +v*» con-
structs would limit the maximal performance to 50 MFLOP/s if the diagonals
of the matrix were stored columnwise. Because of the rowwise storage,
prescribed for the Level 2 BLAS this maximum is reduced further to a maxi-
mal performance not greater than about 31 MFLOP/s for SGBMV and
STBMY, and about 38 MFLOP/s for SSBMV (on a 1-pipe Cyber 205).

In order to get an impression of which part of the timings given in Table 4.2
1s spent to vectorprocessing and which part to overhead (like subroutine call,
loop administration and start-up times), we have tabulated in Table 4.3, for
STBMV, the vector operations carried out in this subroutine and the theoreti-
cal number of clock cycles (of 20 nsec.) needed in each vector operation.
From the total number of clock cycles we have computed the corresponding
theoretical CPU-times for the example of Table 4.2 (with N=30,000 and
K =5). A comparison with the measured CPU-times shows that the overhead
time is not too large compared to the real processing time in subroutine
STBMYV, for this example. A similar conclusion may be drawn for the other
routines.

The results of Table 4.2 show that, in most cases, the Cyber 205 implemen-
tation gives a better performance than the Fortran 77 model implementation.
In [4], the Fortran 77 model implementation of the Level 2 BLAS was shown
to reach a moderate efficiency on the CRAY-1S, by a test with M=N=256,
INCX=INCY=1, UPLO = ‘U’ and DIAG = ‘N’. We have carried out the
same test on a l-pipe Cyber 205 (with «=0.7 and 8=0.9), both with the
model implementation and with our Cyber 205 implementation. Table 4.4
gives the observed speeds in MFLOP/s, and for comparison, those on the
CRAY-IS. Apart from the case STRMV, TRANS = ‘T’, the results show a
better performance on the Cyber 205 than on the CRAY-1S. One should real-
ize here that automatic vectorization works because of the simplest possible
choices of INCX (=1) and INCY (=1) involved. In all other cases one
should, in order to obtain vector speed on the Cyber 205, resort to the Cyber
205 optimized routines. The poor result for STRMV, TRANS = ‘T’ is due to
the fact that the loop
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| INCX=1 | INCX=—2
1-pipe 2-pipe 1-pipe 2-pipe

Vector Operation Cyber 205

gather x 5/4 5/4
gather main diagonal 5/4 5/4 5/4 5/4
multiply by x and store into A 1 1/2 1 172
gather other diagonal 5/4 5/4 5/4 5/4
multiply by x }K times 1 1/2 1 172
add result to & 1 1/2 1 172
store A into x 1 1/2

scatter X 5/4 5/4

Total number of clock cycles 13(K+1)74 9(K+1)/4 (19+13K)/4  (17+9K)/4
per vector element

Corresponding theoretical

CPU-times for K=5 and 11.7 msec. 8.1 msec. 12.6 msec. 9.3 msec.
N =130,000
Measured CPU-times 13.7 msec. 10.0 msec. 14.6 msec. 11.5 msec.

TABLE 4.3. Theoretical numbers of clock cycles per vector element needed in
the vector operations in subroutine STBMV

DO9%, I=J-1,1,-1
TEMP = TEMP + A(LI)*X(I)
90 CONTINUE

is not vectorized by the FTN200-compiler. In the other cases it appears that
on the Cyber 205 the model implementation is at least as efficient as on the
CRAY-1S. However, it is to be expected that the CRAY-1S-results can be
improved considerably with the help of Cray Assembly Language. We are not
acquainted with the existence of such a Level 2 BLAS implementation.
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Speed of model implementation Speed of Cyber 205
with automatic vectorization optimized implementation

Routine TRANS on CRAY-1S on Cyber 2057) M)

‘N’ 39 55(75) 62(90)
SGEMV 1. 31 55(56) 58(58)
SSYMV 31 45(51) 46(51)

N’ 3 34(41) 43(56)
STRMV ‘T 20 6(6) 38(39)
SGER 39 56(78) 64(95)
SSYR 36 38(47) 47(61)
SSYR2 47 45(58) 54(73)

") The numbers in parentheses give the corresponding speeds on a 2-pipe
Cyber 205.

TaBLE 4.4. Comparison of the efficiency of some Level 2 BLAS routines on

the CRAY-IS and the Cyber 205.
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